
J Glob Optim (2010) 47:63–81
DOI 10.1007/s10898-009-9458-3

Solving the problem of packing equal and unequal circles
in a circular container

A. Grosso · A. R. M. J. U. Jamali · M. Locatelli ·
F. Schoen

Received: 7 March 2008 / Accepted: 18 June 2009 / Published online: 9 July 2009
© Springer Science+Business Media, LLC. 2009

Abstract In this paper we propose a Monotonic Basin Hopping approach and its
population-based variant Population Basin Hopping to solve the problem of packing equal
and unequal circles within a circular container with minimum radius. Extensive computa-
tional experiments have been performed both to analyze the problem at hand, and to choose in
an appropriate way the parameter values for the proposed methods. Different improvements
with respect to the best results reported in the literature have been detected.

Keywords Circle packing · Monotonic basin hopping · Multistart

1 Introduction

In its most general formulation the packing problem can be defined as follows. Given a
container which depends on a size parameter r and denoted by C(r) ⊂ R

d , and given n geo-
metrical objects whose position in the d-dimensional space depends on t position parameters
αi1, . . . , αi t , i.e., Di = Di (αi1, . . . , αi t) ⊂ R

d , i = 1, . . . , n, we would like to choose the
parameters in such a way that all the objects are packed into the container without overlapping
(the objects can at most “touch” each other) and the size of the container is minimized. More
formally, the problem is the following

A. Grosso (B) · M. Locatelli
Università di Torino, Turin, Italy
e-mail: grosso@di.unito.it

A. R. M. J. U. Jamali
Department of Mathematics, Khulna University of Engineering and Technology, Khulna, Bangladesh

F. Schoen
Dip. Sistemi e Informatica, Universitá di Firenze, Firenze, Italy

123

64 J Glob Optim (2010) 47:63–81

minimize r
subject to Di (αi1, . . . , αi t) ⊆ C(r), i = 1, . . . , n

D0
i (αi1, . . . , αi t) ∩ D0

j (α j1, . . . , α j t) = ∅, i �= j

where D0
i denotes the interior of Di .

A widely studied case is the one in R
2 where the objects are equal or unequal circles of

given radii and the container has some regular shape like a square, a circle or an equilateral
triangle. In such cases we have: t = 2; the position parameters αi1 and αi2 correspond to
the coordinates of the center of circle i ; the size parameter r has different interpretations
according to the shape of the container (e.g., the side length for the square and the equilateral
triangle, or the radius for the circle).

Much literature exists about the problem of packing equal circles in a square. This includes
computer-aided optimality proofs [7,19,21], branch-and-bound approaches [17], and differ-
ent heuristic techniques like, e.g., [2,4,5,8,22]. A survey about this problem can be found in
[27], and a recent book has been dedicated to the subject [28].

In [25] the problem of placing circles with different sizes into a rectangular container
with fixed width and minimum height is considered. Kallrath [14] tackles an even more
general problem, aiming to cut several different shapes (circles and convex polygons) from
rectangular plates of raw material.

Different contributions exist in the literature also about the problem of placing equal
or unequal circles in a circular container. Heuristic approaches for this problem have been
proposed, e.g., in [1,3,11–13,20,24,26,30,31].

Benchmark results for the problem of packing equal circles in a container whose shape is a
square, a circle or an equilateral triangle are reported and continuously updated in E. Specht’s
web site [23]. Test instances for the problem of packing unequal circles in a circle can be
found, e.g., in [11], but, in the authors’ opinion, even more challenging instances have been
proposed in the Circle Packing Contest (see http://www.recmath.org/contest/CirclePacking/
index.php for details on the contest), where, given a positive integer n, competitors were
asked to place n circles of radii equal to 1, 2, . . . , n, respectively inside a circular container
with minimum radius.

Finally, we also refer to the paper [6] where a detailed survey about methods and appli-
cations of packing problems can be found.

In [2] we investigated the problem of packing equal circles in the unit square and
proposed a quite successful method for that. The problem is in fact equivalent to that of
minimizing the edge length of a square container into which we want to pack n equal cir-
cles with unit radius. In this paper we investigate a related problem: packing circles with
unit radius into a circular container with minimum radius. Except for the shape of the
container (there a unit square, here a circle) the two problems are quite similar and we
do expect that the extension of the method employed in [2] also gives very good results
for this problem (it is indeed confirmed by the computational results, see Sect. 4). But
the aim of this paper is not merely to apply a method, proved to be successful for one
problem, to a closely related one. The aim of the paper is also (and, actually, mainly)
to perform a more detailed computational investigation both of the problem at hand and
of the proposed method, in order to better understand how to choose its most relevant
parameters.

We will also investigate the problem of packing unequal circles in a circle. In spite of
the similarity of this problem with the problem of packing equal circles, we will show that
the obvious extension of the method proposed for the case of equal circles to the case of
unequal ones will not be successful. The peculiarities of the problem with unequal circles (in

123

http://www.recmath.org/contest/CirclePacking/index.php
http://www.recmath.org/contest/CirclePacking/index.php

J Glob Optim (2010) 47:63–81 65

particular, its combinatorial nature due to the different radii of the circles) have to be taken
into account in order to define a successful method also for this case.

The paper is organized as follows. In Sect. 2 we will introduce the so called Monotonic
Basin Hopping (MBH) approach. In Sect. 3 we will describe a population-based approach
strictly related to MBH, called Population Basin Hopping (PBH). In Sect. 4 we will present
different computational experiments aimed both at analyzing the problem at hand and at
selecting the most appropriate values for the parameters on which the proposed methods
depend. Finally, in Sect. 5 we will investigate the case of unequal circles.

2 Monotonic basin hopping

It is well known that the problem of packing equal or unequal circles in a circle can be
reformulated as a mathematical programming one. Indeed, it can be stated as follows

minimize r (1)

subject to α2
i1 + α2

i2 ≤ (r − ri)
2, i = 1, . . . , n (2)

(αi1 − α j1)
2 + (αi2 − α j2)

2 ≥ (ri + r j)
2, i �= j (3)

r ≥ max
i = 1,...,n

ri , (4)

where ri denotes the radius of circle i (in the case of equal circles we have ri = 1 for all i).
Constraints (2) ensure that each circle is within the container, while constraints (3) guarantee
that circles do not overlap (constraint (4) is an obvious lower bound for the radius of the
container).

First we will restrict our attention to the case of equal circles. We will get back to the case
of unequal circles in Sect. 5. The problem of packing equal circles, i.e., problem (1)–(4) with
ri = 1 for all i , turns out to be a global optimization one. The number of local minimizers
tends to increase quite quickly with the number n of circles (see the discussion in Sect. 4.1).
When dealing with global optimization problems, an obvious approach is the Multistart one.
In such an approach we simply start local searches from randomly generated initial points
and return the best local minimizer. However, the rapid increase in the number of local min-
imizers suggests that Multistart cannot be an efficient method for this problem. The method
we propose is quite close to Multistart (they are both based on multiple local searches and
they only differ in the mechanism for the generation of the initial points) but at the same
time also dramatically more efficient than Multistart. In the field of global optimization such
method has been (to the authors’ knowledge) first applied to molecular conformation prob-
lems (see [15,29]) under the name of MBH, but in fact it can also be viewed as a special
case of the Iterated Local Search (ILS) (see, e.g., [18]), which is usually employed in the
field of combinatorial optimization problems. We will refer to this method with MBH. Its
description is rather simple. The main ingredients of the method are: a local search procedure
L S, a perturbation move P , and a stopping rule SR.

Algorithm: Monotonic Basin Hopping
Let X be a local minimum
While SR is not satisfied

Let Y := L S(P(X))

If f (Y) < f (X) then

123

66 J Glob Optim (2010) 47:63–81

let X := Y
EndIf

EndWhile
Return X

The initial local minimum X is obtained by a local descent started from a point with
randomly generated coordinates.

In the next subsections we will will provide some detail on our choices of L S, P and
SR for the problem at hand, but before that we remark once again how close MBH is to the
Multistart approach. In fact, we can even consider Multistart as a special case of MBH where
the perturbation move P(X) simply generates a random point, independent from the current
one X .

2.1 Local search procedure

According to (1)–(4), our problem can be viewed as a non-convex one with objective and
constraint functions continuously differentiable infinitely many times. Therefore, any local
search method tailored to this kind of problems can be employed. Our past experience (see
[1,2]) suggests that SNOPT [9] is particularly well suited for these problems.

2.2 Perturbation move

One of the keys of the success of the existing MBH or ILS methods is often the perturbation
move. A good rule is to choose it in such a way that the structure of the current local mini-
mizer is not completely lost. The basic idea is that the method should jump to a different but
“close” local minimizer. In the case of equal circles a very simple but, as we will see, quite
effective, perturbation move, is based on a uniform random perturbation of each coordinate
of the circle centers within some interval [−�,�]. This kind of perturbation is also called
jerk; besides the full-jerk (FJ) perturbation, where each center is perturbed, natural extensions
that can be considered are partial jerk perturbations, where only a certain percentage of the
centers are moved.

This kind of move is completely unbiased, and independent from the structure of the cur-
rent local minimizer; this differs from what is done, for example, in Specht’s Pulsating Disks
Shaking algorithm (see e.g. [28]), where the displacements applied to the circles at each
stage are computed referring to the current configuration. The single parameter �, on which
the perturbation depends, is of great importance. If � is too small, the starting point will
remain very likely in the basin of attraction of the current local minimizer (we are keeping
“too much” of the structure of that local minimizer); on the other hand, if � is too large, the
method becomes basically equivalent to a Multistart method (loosing “too much” of the cur-
rent structure). In Sect. 4.2 we will further discuss the choice of � and perform experiments
in order to select an appropriate value for it.

2.3 Stopping rule

Ideally we would like to stop a method as soon as no more progress can be expected. For
the Multistart method, for which, under mild assumptions, it can be proved that it is able to
detect the global minimizer with probability one if we allow for an infinite number of local
searches, this would mean stopping when the global minimizer has been detected. Instead,

123

J Glob Optim (2010) 47:63–81 67

a single run of MBH does not necessarily lead to a global minimizer and might get stuck
into a local minimizer from which it is unable to escape. In such a case what we can do is
simply to restart MBH from a new random starting point (a sort of Multistart where local
searches are substituted by MBH runs). In practice, if no special information is available, we
are unable to stop when we are really sure that no more progress will be possible. The best
we can do is to stop when no improvement has been observed for a sufficiently large number
of iterations (of course, this is just a heuristic rule with no guarantee that improvements are
not possible any more). The number of iterations without improvements after which we stop
MBH is denoted by the parameter MaxNoImp. The choice of this parameter is particularly
important: we should not stop too early (which could mean that we are not patient enough to
reach the global minimizer) or too late (which would mean a waste of computational effort).
The choice of this parameter will be computationally investigated in Sect. 4.3.

3 Population basin hopping

Each run of MBH follows a single path through the space of local minimizers. An alternative
to MBH is PBH [10], inspired by the Conformational Space Annealing algorithm (see, e.g.,
[16]), in which the single path search is substituted by a multiple path search. During this
search, members of the population collaborate with each other in order to guarantee diversifi-
cation of the search and to avoid the short-sighted behavior which might characterize a single
path search. The new ingredient in PBH with respect to MBH is the dissimilarity measure d .
New parameters are N (the size of the population) and dcut (a threshold dissimilarity value).
The overall algorithm is the following.

Population Basin Hopping
Let X be a collection of N local minimizers (randomly generated)
While the stopping rule S R not satisfied

let Y := {L S(P(X)) : X ∈ X }
Repeat for each Yk ∈ Y

let Xh ∈ arg minX∈X d(X, Yk)

If d(Yk, Xh) > dcut Then
let Xh ∈ arg maxX∈X f (X)

EndIf
If f (Yk) < f (Xh) Then

let Xh := Yk

EndIf
EndRepeat

EndWhile
Return X

Basically, at each iteration: a set Y of new candidates is generated through the appli-
cation of the perturbation move to each member of the population; each new candidate
Yk, k = 1, . . . , N , competes either with the member Xh of the current population X most
similar to it with respect to the dissimilarity measure d (if d(Xh, Yk) ≤ dcut), or with the
worst member of the population (if d(Xh, Yk) > dcut , i.e., Yk is dissimilar enough with
respect to all members of the current population); if it wins (i.e., if it has a better function
value), it replaces Xh in the population for the next iteration. Note that MBH is, in fact, a

123

68 J Glob Optim (2010) 47:63–81

special case of PBH where N = 1. There is a trade off between two conflicting objectives
in choosing N . We have already outlined above the (possible) advantages of PBH: increas-
ing N increases diversification and stimulates a less short-sighted search. On the other hand,
increasing N also increases the computational effort per iteration. We will discuss appropriate
choices for N in Sect. 4.5.

In what follows we discuss the dissimilarity measure and the dcut value which will be
employed throughout the paper. Let X = {(αi1, αi2)}i = 1,...,n and Y = {(βi1, βi2)}i = 1,...,n

be two distinct local minimizers. Let ρh(X) be the distance of circle h from the bary-
center of the centers of all circles in the local minimizer X , and define ρh(Y) in a sim-
ilar way; let δX be the vector whose components are the distances ρh(X) ordered in a
nondecreasing way, and define δY in a similar way. Finally, we define the following dis-
similarity measure:

d(X, Y) =
n∑

k = 1

|δX [k] − δY [k]|. (5)

The value dcut will be fixed throughout the paper to half the average dissimilarity within the
initial randomly generated population.

The stopping rule SR is basically the same employed for MBH: we stop if the best member
of the population does not change for a fixed number MaxNoImp of iterations. Although
one could try to develop more sophisticated rules—taking into account some problem struc-
ture—this one allows to easily control the computational effort spent into the search, and is
a popular choice in several metaheuristics.

4 Computational experiments and analysis

We performed different computational experiments both to analyze the properties of the
problem under investigation and to select the parameter values for MBH and PBH in an
appropriate way. All the tests have been performed on a Pentium IV 2.4 GHz with 1GB
RAM.

4.1 Number of local minimizers

Our first set of experiments aims at showing that the number of local minimizers strongly
increases with the number n of circles, in such a way that a Multistart technique is not well
fitted to solve the problem. In order to recognize distinct local minimizers we consider their
objective function values (i.e., the radius of the container). We adopt a conservative criterion
by declaring two local minimizers different if they have a large enough difference in their
objective function values. Taking into account the precision of the local solver, the thresh-
old value above which two local minimizers are considered as distinct ones on the basis of
their objective function values has been fixed to 10−8. Note that, according to this criterion,
we may consider as equal also different minimizers: the structures of two solutions can be
different even if they have the same objective value—and this amounts to underestimating
the number of local minimizers. In spite of this, the increase in the number of distinct local
minimizers turns out to be very quick. Indeed, in Fig. 1 we show the total number of dis-
tinct local minimizers which have been detected over 50,000 local searches starting from
randomly generated (over a sufficiently large box) initial points for n up to 40. Though the
increase is not a regular one, the trend is quite clear, showing a rapid increase with the num-

123

J Glob Optim (2010) 47:63–81 69

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 15 20 25 30 35 40

Fig. 1 Empirically determined number of local minima

ber of circles. This gives a clear indication why Multistart is most likely not an appropriate
method to tackle this problem, which will be confirmed by the results reported in the next
subsection.

4.2 MBH and multistart

In this section we compare the behaviour of a Multistart procedure with a MBH procedure
employing a FJ perturbation. The reliability of MBH with FJ is also studied for some values
of the perturbation parameter �.

We have already commented about the importance of parameter �. We remark that a
good choice of � depends on two conflicting objectives. We define successful a run of MBH
leading to a global minimizer. On one hand, we would like that a successful run of MBH
converges to the global minimizer as fast as possible; on the other hand, we would like to
maximize the probability that a run of MBH is successful. Note that the first objective is
maximized when � is very small: in such case a successful run is just one where the initial
point is already the global minimizer. On the other hand, this is exactly the situation where
the second objective is minimized. The second objective is maximized when � is very large
(any run converges to the global minimizer in this case), but in this case the first objective is
minimized (the convergence is very slow, basically the same as the one of Multistart).

We tested four different values � ∈ {0.6, 0.8, 1.0, 1.2}. At the same time we also tested
the Multistart algorithm. For a fair comparison, we allowed a number of local searches in
Multistart equal to twice the number of local searches required by MBH with � = 0.8. In
all tests we fixed the parameter MaxNoImp to 100 (such choice is justified by the results
reported in Sect. 4.3). The results are reported in Table 1. Column BestKnown reports

123

70 J Glob Optim (2010) 47:63–81

Table 1 Overall results for 5 independent MBH runs with different � values and results of the multistart
approach

n BestKnown OurResult NrSuccesses Multistart

0.6 0.8 1.0 1.2

60 8.646219845458 8.646219845458 4 5 5 5(5) 8.646219845458
61 8.661297575540 8.661297575540 4 5 5 5(5) 8.661297575540
62 8.829765408972 8.829765408972 0 5 0 0(1) 8.829765408972
63 8.892351537551 8.892351537551 0 3 2 2(2) 8.892351537551
64 8.961971108486 8.961971108486 1 4 0 1(1) 8.963953058325
65 9.017397323209 9.017397323209 3 1 4 1(3) 9.017397323209
66 9.096665836768 9.096279426924 2 3 1 0(0) 9.096780214977
67 9.169119588389 9.168971881784 1 0 0 0(0) 9.176218093551
68 9.229773746751 9.229773746751 2 2 1 0(0) 9.235351101702
69 9.269761266641 9.269761266641 2 5 4 0(1) 9.287879333885
70 9.346055334486 9.345653194048 0 3 1 1(1) 9.345877399987
71 9.416206538907 9.415796896871 0 4 1 1(1) 9.416893341398
72 9.473890856713 9.473890856713 1 3 4 0(1) 9.475183294184
73 9.540509504650 9.540509504650 1 2 0 0(0) 9.555174396922
74 9.589239461626 9.589232764339 2 1 2 0(1) 9.610874419416
75 9.672029634515 9.672029631947 0 2 0 0(1) 9.676431427368
76 9.729596802162 9.729596802162 1 1 3 0(0) 9.729596802162
77 9.798987497420 9.798911924507 1 3 1 0(0) 9.799265125039
78 9.857712212603 9.857709899885 0 2 0 0(1) 9.858847964363
79 9.905063467661 9.924486046000 0 0 0 0(0) 9.921002764093
80 9.968151813153 9.969802931195 0 0 0 0(0) 9.973995281961

the best known result, according to [23], for a given n value of the number of circles. Col-
umn OurResult reports the best result we obtained with the tested � values. We notice
that together with a couple of results, namely n = 79, 80, which are worse with respect
to those reported in [23], we also have seven cases, namely n = 66, 67, 70, 71, 75, 77, 78,
where our results improve those in [23] (within the table improvements are reported in
boldface and failures in emphasized text). Such improvements, together with some oth-
ers, are also displayed in Tables 2 and 3. Column NrSuccesses reports the number
of successes over 5 MBH runs for each � value—a “success” corresponds to detecting
the best-known configuration, or a better one. For the case � = 1.2 we also tried with
MaxNoImp = 200, a choice justified by the fact that, as we increase �, more time is needed
to explore a larger neighborhood. The corresponding number of successes is reported within
parentheses. Finally, Column Multistart reports the results obtained with the Multistart
approach.

We notice that there is no optimal choice of � for all n values. All the same the results
give a quite clear indication. Indeed, we can remark that while the value � = 1.2 leads to 14
failures (decreasing to 8 with MaxNoImp = 200) and the values � = 0.6, 1.0 both lead to
8 failures, the value � = 0.8 only leads to 3 failures. Therefore, we can consider � = 0.8
the most robust choice among the tested ones, at least for the tested instances.

As the discussion in Sect. 4.1 already suggested, the results obtained with Multistart are
usually quite poor, and are clearly inferior with respect to those obtained with MBH. Multi-
start offers a better result only for the n = 79 instance; but increasing the number of MBH
runs or the MaxNoImp parameter (see Table 2), and proportionally the number of allowed
local searches in Multistart, the situation is reversed. In spite of the larger number of local
searches allowed for Multistart, such algorithm is able to reach the best known solution only

123

J Glob Optim (2010) 47:63–81 71

Table 2 Overall results for 5 MBH runs with different MaxNoImp values

n BestKnown OurResult NrSuccesses CPU time

50 100 200 300 400 500

30 6.197741070879 6.197741070879 5 5 5 5 5 5 110.49
31 6.291502622129 6.352805480965 0 0 0 0 0 0 130.14
32 6.429462970950 6.429462970950 5 5 5 5 5 5 151.14
33 6.486703123560 6.486703123560 5 5 5 5 5 5 164.69
34 6.610957090001 6.610957090001 5 5 5 5 5 5 174.41
35 6.697171091790 6.697171091790 5 5 5 5 5 5 179.81
36 6.746753793424 6.746753793424 5 5 5 5 5 5 247.81
37 6.758770483144 6.758770483144 5 5 5 5 5 5 240.7
38 6.961886965228 6.961886965228 5 5 5 5 5 5 213.43
39 7.057884162624 7.057884162624 5 5 5 5 5 5 231.1
40 7.123846435943 7.123846435943 5 5 5 5 5 5 283.29
41 7.260012328677 7.260012328677 4 4 4 5 5 5 264.59
42 7.346796406943 7.346796406943 4 5 5 5 5 5 294.11
43 7.419944856341 7.419944856341 5 5 5 5 5 5 449.45
44 7.498036682995 7.498036682995 4 4 5 5 5 5 313.27
45 7.572912326368 7.572912326368 0 2 3 3 3 3 482.36
46 7.650179914694 7.650179914694 5 5 5 5 5 5 414.0
47 7.724170052598 7.724170052598 3 5 5 5 5 5 428.22
48 7.791271430559 7.791271430559 4 4 5 5 5 5 467.42
49 7.886870958803 7.886870958803 1 1 1 1 2 2 775.54
50 7.947515274784 7.947515274784 2 2 4 4 4 4 655.69
51 8.027506952419 8.027506952419 5 5 5 5 5 5 542.55
52 8.084717190690 8.084717190690 5 5 5 5 5 6 699.28
53 8.179582826841 8.179582826841 1 2 3 3 3 3 807.84
54 8.203982383469 8.203982383469 2 3 3 3 3 3 701.1
55 8.211102550928 8.211102550928 3 3 4 4 4 4 1178.43
56 8.383529922579 8.383529922579 5 5 5 5 5 5 732.19
57 8.447184653410 8.447184653410 5 5 5 5 5 5 952.84
58 8.524553770140 8.524553770140 3 4 4 5 5 5 1078.31
59 8.592499959370 8.592499959370 5 5 5 5 5 5 1495.39
60 8.646219845458 8.646219845458 0 5 5 5 5 5 1168.12
61 8.661297575540 8.661297575540 5 5 5 5 5 5 1031.43
62 8.829765408972 8.829765408972 2 3 4 4 4 4 1400.12
63 8.892351537551 8.892351537551 3 4 5 5 5 5 1363.18
64 8.961971108486 8.961971108486 0 1 1 1 1 1 1266.97
65 9.017397323209 9.017397323209 3 3 3 3 3 3 1708.53
66 9.096665836768 9.096279426924 3 3 3 3 4 4 1813.23
67 9.169119588389 9.168971881784 1 1 2 2 2 2 2563.13
68 9.229773746751 9.234077342045 0 0 0 0 0 0 1390.52
69 9.269761266641 9.269761266641 5 5 5 5 5 5 1831.42
70 9.346055334486 9.345653194048 1 2 3 3 3 3 2391.79
71 9.416206538907 9.415796896871 4 5 5 5 5 5 2487.81
72 9.473890856713 9.473890856713 3 3 3 3 3 3 2246.99
73 9.540509504650 9.540346152138 1 1 1 1 1 2 2806.35
74 9.589239461626 9.589232764339 1 2 2 2 2 2 2543.33
75 9.672029634515 9.672029631947 1 2 2 2 2 2 3034.33
76 9.729596802162 9.729596802162 1 1 1 1 2 3 3927.92
77 9.798987497420 9.798911924507 1 1 3 4 4 4 3694.47
78 9.857712212603 9.857709899885 0 0 0 0 0 2 4852.32
79 9.905063467661 9.909306621540 0 0 0 0 0 0 3590.06
80 9.968151813153 9.969802931195 0 0 0 0 0 0 4032.13
81 10.010864241201 10.010864241201 2 2 2 3 3 3 5293.59
82 10.050824223451 10.050824223451 1 3 4 4 4 4 5432.51
83 10.116864426926 10.116857875102 0 0 1 2 2 2 7914.08

123

72 J Glob Optim (2010) 47:63–81

Table 2 continued

n BestKnown OurResult NrSuccesses CPU time

50 100 200 300 400 500

84 10.149530867236 10.149530867236 4 5 5 5 5 5 4780.79
85 10.163111465877 10.163111465877 3 4 4 4 5 5 7532.68
86 10.298701310984 10.298701053110 3 4 5 5 5 5 5128.9
87 10.363209161980 10.363208505078 2 5 5 5 5 5 4927.78
88 10.432342147160 10.432337692732 4 4 4 4 4 4 5578.01
89 10.500627671551 10.500491814574 2 2 2 3 3 3 4874.01
90 10.546069177954 10.546069177954 3 3 3 3 3 3 5059.66
91 10.566772233506 10.566772233506 2 3 3 3 3 3 6113.41
92 10.684689759023 10.687984877108 0 0 0 0 0 0 10041.7
93 10.733386127679 10.733352600260 0 1 2 3 3 3 7251.63
94 10.778032163883 10.778032160252 1 2 2 2 2 2 7831.68
95 10.840205021597 10.840205021597 0 0 0 0 1 1 13635.1
96 10.883669894312 10.883669894312 1 1 1 1 1 1 9701.68
97 10.938791648300 10.938590110073 1 1 1 2 2 2 9259.48
98 10.979383128207 10.979383128207 0 0 0 2 5 5 19099.9
99 11.037197388568 11.035161062993 4 5 5 5 5 5 7533.95
100 11.082527292540 11.082149724310 1 2 4 5 5 5 15311.6

in few cases, and only in a single case (namely n = 61) the best known solution is reached
quite regularly.1 It is also important to remark that the cost per local search in MBH is much
lower (almost four times lower) than the cost per local search in Multistart. This can be
explained with the fact that in MBH local searches are not started from completely random
points as in Multistart, but in the neighborhood of a previously detected local minimizer, so
that the local search procedure is able to converge in few iterations.

4.3 Choice of the MaxNoImp parameter

As already pointed out, MaxNoImp is an important parameter for MBH. Too low a value
would cause to stop the algorithm before convergence is reached, while too large a value
would cause a waste of computational effort. Also in this case we can hardly expect that there
exists an optimal choice for all n values. So our aim is to look for a robust choice of this param-
eter value. We tested the following set of values:MaxNoImp∈ {50, 100, 200, 300, 400, 500}.
In view of the results in Sect. 4.2 we fixed � = 0.8.

The first set of results over 5 runs of MBH for each value n = 30 . . . 100 is reported in
Table 2. The first column BestKnown reports the best known solution according to [23] for
a given n value. Column OurResult reports the best result we obtained over the 5 MBH
runs (in boldface we report the results which improve those reported in [23], while in empha-
sized text we report the failures). In Column NrSuccesseswe report for each MaxNoImp
value the number of times the best solution reported in [23] has been reached (or improved).2

Finally, in Column CPU time we report the overall computation time (in seconds) for the
5 runs, referred to the value MaxNoImp= 500. We remark that in 19 cases we could obtain

1 The case n = 61 belongs to the regular packing sequence n = 3k(k − 1) + 1, k = 1, . . ., for which the
(presumably) optimal solution has a circle centered at the origin and, around it, successive layers, each made
up by 6 j circles, j = 0, 1, . . . , k − 1.
2 Note that for the common n and parameter values, these results are sometimes slightly different with respect
to those reported in Table 1. This is due to the stochastic component of the MBH approach.

123

J Glob Optim (2010) 47:63–81 73

Table 3 Overall results for 50 MBH runs with different MaxNoImp values over some hard instances

n BestKnown OurResult NrSuccesses CPU time

50 100 200 300 400 500

31 6.291502622129 6.291502622129 0 0 0 0 0 1 1911.75
68 9.229773746751 9.229773746751 10 16 18 19 21 21 25695.9
78 9.857712212603 9.857709899885 4 6 9 16 18 21 50324.2
79 9.905063467661 9.905063467661 1 1 2 2 2 2 44082.2
80 9.968151813153 9.968151813153 3 3 3 3 4 4 66829.3
83 10.116864426926 10.116857875102 0 3 9 13 19 21 99316.2
92 10.684689759023 10.684645847916 1 3 3 4 5 5 88112.0
95 10.840205021597 10.840205021597 4 9 15 17 18 19 118471.0
98 10.979383128207 10.979383128207 12 22 28 35 41 41 123050.0

an improvement compared to [23]. All the same, we also have some failures. In particular,
we have 13 failures—where none of the 5 runs were successful—with MaxNoImp= 50 but
these immediately drop down to 9 with MaxNoImp= 100 and progressively decrease to 5
with MaxNoImp= 500. As a further test we decided to enlarge the number of MBH runs
from 5 to 50 for the 9 cases where a failure occurred with MaxNoImp= 100. The results
are reported in Table 3. We can notice that n = 31 turns out to be an extremely hard case
for MBH: only with MaxNoImp= 500 a single success could be obtained. This case will
be further discussed in Sect. 4.5 where we will consider a different approach that is able to
handle this instance. In all the other cases we always have at least one success (with the only
exception of the failure for n = 83 with MaxNoImp= 50) and in one case, namely n = 92,
we have a further improvement with respect to [23].

As a general comment about the results we obtained, we note that even a very aggressive
strategy like choosing MaxNoImp= 50 is often successful (of course, the number of suc-
cesses is lower in this case, but this is counterbalanced by the lower computational effort). All
the same with this choice failures occur more often (even over 100 runs). For this reason we
believe that less aggressive choices like MaxNoImp= 100 or MaxNoImp= 200 represent
the best compromise between the ability of reaching a good solution and the computational
effort required.

4.4 Extensions of the basic perturbation strategy

In this section we focus on a couple of natural extensions to the jerk perturbation procedure.
In contrast with the “full jerk” tested in Sect. 4.2 we consider MBH algorithms equipped
with partial jerk perturbations, where only a subset of circles is moved in the perturbation.
The subset of perturbed circles is selected as

• any random subset of {1, . . . , n}, without restrictions on its cardinality (Random Partial
Jerk, RPJ), or

• a random subset of {1, . . . , n} of fixed cardinality (Fixed-size Partial Jerk, FPJ).

In both cases, the parameter � still plays a key role and should be carefully calibrated.
For the RPJ strategy, we chose to perturb each circle with probability 0.5, and we ran

tests with � = 0.8, 1.0, 1.2, 1.6 and MaxNoImp=100. For the FPJ perturbation, also the
cardinality p of the perturbed set is a sensible parameter; we only present the results obtained
with the choice p = 0.1n, that already give some useful hint for the interested reader. For
FPJ we tested � = 1.8, 2.0, 2.2, 2.4, with MaxNoImp= 100.

123

74 J Glob Optim (2010) 47:63–81

Table 4 Impact of � when using
a RPJ perturbation

Number of successes in MBH (RPJ)

MaxNoImp= 100 200

n � = 0.8 � = 1.0 � = 1.2 � = 1.6 � = 1.2

60 5 5 5 4 5
61 4 5 5 5 5
62 0 1 0 1 3
63 3 3 3 2 4
64 2 2 1 1 1
65 0 3 3 1 3
66 2 1 4 0 5
67 0 1 0 0 0
68 0 0 1 1 2
69 2 2 4 2 5
70 2 3 2 1 2
71 2 2 2 1 2
72 5 3 1 3 5
73 0 0 1 0 1
74 1 1 1 1 2
75 0 0 0 0 0
76 0 0 2 1 4
77 1 2 1 1 4
78 0 0 2 0 2
79 0 2 1 1 1
80 0 0 1 0 2
Success 12 15 18 15 19
Time (h) 4.69 5.03 4.56 10.33 7.56

The results gathered for RPJ and FPJ are reported in Tables 4 and 5, respectively.
From the point of view of robustness, the best option for � in the RPJ case seems

to be � = 1.2; allowing longer runs with MaxNoImp= 200 (see the rightmost column)
improves reliability with only two failures, at the expense of a higher computational effort.
In the FPJ case � = 2.2 is the best choice. The cumulative running times for the FJ,
RPJ, FPJ over the whole batch of tests with the best � values were 4.06, 4.56 and 3.56 h,
respectively.

The figures reported for both partial jerks operators suggest that the best � value detected
lowers as the number of perturbed circles grows. Note that RPJ perturbs on average n/2
circles, and FPJ always perturbs n/10 circles. This follows somehow the “golden rule” of
ILS methods that is, the perturbation should not heavily alter the structure of the current solu-
tion, allowing to keep relevant (hopefully optimized) parts of it: if we perturb few circles, we
can allow larger displacements, while if we perturb a lot (or even all) of them, then we have
to reduce the displacement � in order not to excessively change the structure of the current
solution.

From the point of view of robustness, the MBH algorithm equipped with the RPJ
perturbation dominates the other versions. Although this is not completely evident from
Tables 1, 4, 5, more extensive tests with MaxNoImp= 500 and 50 runs performed on hard
instances clearly show the higher reliability of RPJ (see Table 6).

123

J Glob Optim (2010) 47:63–81 75

Table 5 Impact of � in FPJ
perturbation based MBH method

Number of successes in MBH (FPJ)

MaxNoImp= 100 200

n � = 1.8 � = 2.0 � = 2.2 � = 2.4 � = 2.2

60 5 5 5 5 5
61 5 5 5 5 5
62 1 2 2 1 3
63 2 3 3 3 5
64 2 3 1 1 3
65 3 5 5 1 5
66 3 1 2 1 2
67 0 0 0 0 0
68 0 1 1 1 1
69 2 1 1 1 1
70 2 1 1 0 1
71 2 0 1 1 1
72 3 5 2 1 4
73 0 0 0 0 0
74 0 0 1 0 1
75 0 1 1 1 3
76 1 2 2 5 2
77 2 2 1 0 1
78 0 1 0 2 0
79 0 0 0 0 1
80 1 0 1 0 2
Success 13 15 17 14 18
Time (h) 2.61 3.11 3.56 3.32 5.83

Table 6 Comparison of FJ, RPJ and FPJ

n BestKnown OurBestResult Number of successes
(in literature) (in MBH method)

FJ (0.8) RPJ (1.2) FPJ (2.2)

31 6.291502622129 6.291502622129 1 24 1
68 9.229773746751 9.229773746751 21 37 18
78 9.857712212603 9.857709899885 21 19 16
79 9.905063467661 9.905063467661 2 7 6
80 9.968151813153 9.968151813153 4 20 11
83 10.116864426926 10.116857875102 21 23 5
92 10.684689759023 10.684645847916 5 4 2
95 10.840205021597 10.840205021597 19 20 10
98 10.979383128207 10.979383128207 41 39 36
Total success 135 193 105

4.5 Computational experiments with PBH

We also performed some experiments with PBH, in particular with population size N =
{1, 2, 4, 5, 8, 10},� = 0.8 and MaxNoImp= 100 (recall that N = 1 is equivalent to MBH)
for large n values ranging between 80 and 100. The largest tested N values, say N ∈ {5, 8, 10},
usually guarantee the highest percentage of successes, showing that for large N values PBH
turns out to be a quite robust approach. On the other hand, we should not forget that increasing
N also means larger computational cost per iteration. If the results are not compared with
respect to the percentage of successes, but rather with respect to the number of local searches

123

76 J Glob Optim (2010) 47:63–81

per success, then low N values (even N = 1, i.e., MBH) are often the best option. Basically,
it seems that for these problems single or few path searches are already quite efficient and
that the benefits coming from the greater diversification guaranteed by PBH with larger N
values are overridden by the larger computational cost per iteration.

We also compared MBH (50 runs with MaxNoImp up to 500) and PBH (10 runs with
N = 10) over the hardest instances for MBH (those reported in Table 3). The results usually
confirm the previously discussed ones: PBH is quite robust (always at least 3 successes over
10 runs) but comparable with MBH in terms of number of local searches per success. There
is, however, an exception, namely the case n = 31, which is worthwhile to discuss. In this
case PBH strongly outperforms MBH. While MBH really had to struggle with this instance
and was able to detect the best known solution only in 1 out of 50 runs withMaxNoImp= 500
(and never for lower values of MaxNoImp), PBH was able to reach the best known solution
in 9 out of 10 runs. This result suggests that PBH with a relatively large N value is probably
not, on average, the most efficient approach, but turns out to be a quite robust one, which
guarantees to return a solution within a reasonable time also on those instances which are
particularly hard for MBH.

As a final remark we should emphasize that here we just tested a single dissimilarity mea-
sure. It is certainly possible that future researches will reveal new measures, able to make
PBH more efficient.

5 The case of unequal circles

In order to deal with the case of unequal circles we could simply extend the approaches
employed for the case of equal circles with a slight variant in the perturbation move: the
coordinates of each circle i are displaced by a uniform random perturbation within the inter-
val [−�ri ,�ri], where ri denotes the radius of circle i . But, as we will see through some
experiments, this simple extension is not the best way to tackle the problem. Indeed, the case
of unequal circles has some peculiarities which have to be taken into account. The combina-
torial side of this problem, represented by the different radii of the circles, can be exploited in
some ways. In particular, we can define another possible perturbation move, based on leaving
unchanged the center of two circles but swapping their radii (of course, this would not cause
any change when the two circles are equal). It turns out that in case of unequal circles the
latter move is often much more effective than the former one (see the experiments reported
in Tables 8 and 9).

Another good strategy which exploits the different radii of the circles is the following:

• remove the “small” circles;
• solve the problem with the remaining (largest) circles;
• sequentially insert the missing circles (following a non increasing order of the radii) in the

“holes” of the current solution (possibly by enlarging the radius of the circular container).

Of course, we need to define what a “small” circle is. We defined a circle i as small if

ri ≤ 1

4
max

j = 1,...,n
r j . (6)

This strategy strongly simplifies some of the tests by a considerable reduction of the search
space during the first phase where some circles are removed.

123

J Glob Optim (2010) 47:63–81 77

Table 7 Test set with unequal circles

Test n. n Radii

1 28 r1−3 = 10, r4−6 = 4.826, r7−12 = 2.371, r13 = 1.547,
r14−19 = 1.345, r20−22 = 1.161, r23−28 = 0.9

2 25 r1−3 = 10, r4−9 = 3.533, r10−12 = 2.3, r13−18 = 1.8,
r19 = 1.547, r20−25 = 1.08

3 17 r1−4 = 100, r5−9 = 41.415, r10−17 = 20
4 10 r1 = 50, r2 = 40, r3−5 = 30, r6 = 21,

r7 = 20, r8 = 15, r9 = 12, r10 = 10
5 11 r1−2 = 25, r3−4 = 20, r5 = 15, r6 = 14,

r7 = 12, r8 = 11, r9 = 10.5, r10 = 10, r11 = 8.4
6 14 r1 = 40, r2 = 38, r3 = 37, r4 = 36, r5 = 35,

r6 = 31, r7 = 27, r8 = 23, r9 = 19, r10 = 17, r11 = 16,
r12 = 15, r13 = 14, r14 = 11

7 17 r1 = 25, r2 = 20, r3−4 = 15, r5−7 = 10, r8−17 = 5
8 15 r1 = 1, ri+1 = ri + 1, i = 1, . . . , 14
9 162 r1−3 = 1.8, r4 = 1.75, r5−16 = 1.3, r17−25 = 1.05,

r26−40 = 0.9, r41−71 = 0.8, r72 = 0.75, r73−83 = 0.7,
r84−137 = 0.65, r138−162 = 0.55

Table 8 Best results and (within parenthesis) the number of times they have been obtained with MBH, PBH
with N = 5, and PBH with N = 10

Test n. Bestknown MBH PBH with N = 5 PBH with N = 10

5 60.89 60.7099 (5/50) 60.7099 (3/10) 60.7099 (1/5)
6 114.98 113.5587 (1/500) 113.5587 (1/100) 113.5587 (1/50)
7 49.6837 49.1873 (31/50) 49.2296 (10/10) 49.2296 (5/5)
8 39.37 38.8379 (11/500) 38.8379 (3/100) 38.8379 (8/50)
9 11.6809 11.5528 (1/50) 11.5413 (1/10) 11.5519 (1/5)

A set of 18 test instances for the case of unequal circles is reported, e.g., in [11].3 In some
of these test problems the set of circles together with their radii is a subset of those for other
test problems, while the best-known radius is the same. For instance, in test n.4 there are nine
circles, three with radius equal to 10 and six with radius equal to 3.533, while in test n.5 there
are twelve circles, including those of test n.4 plus three circles with radius equal to 2.3. The
best known radius for both tests is 21.547. This means that when solving the larger test n.5,
we are actually solving also the smaller test n.4 (it is enough to remove from the solution for
test n.5 the three circles with radius 2.3).

Taking into account these simplifications, we can reduce the test set to the nine ones
reported in Table 7. The strategy of temporarily removing small circles strongly simplifies
some of these tests. In particular, the first three tests are considerably simplified. Indeed, test
n.1 reduces to six circles in the first phase; tests n.2 and 3 reduce to nine circles in the first
phase, and in all these three cases the insertion of the missing circles can be easily carried on
without having to enlarge the radius of the circular container (i.e., all the missing circles can
be inserted in the “holes” of the container). MBH over the reduced set of circles, followed by
insertion of the missing circles, easily solves these three instances. In test n.4 the reduction
of the search space is less strong (only two circles are initially removed) but all the same also

3 Actually, in that paper 24 test problems are reported, but four of them are with equal circles (namely, tests
n.2, 21–23), and two of them are equivalent to other problems within the test set (namely, test n.7 is equivalent
to test n.19, and test n.13 is equivalent to test n.20.

123

78 J Glob Optim (2010) 47:63–81

Table 9 Best results and (within parenthesis) the number of times they have been obtained with MBH, PBH
with N = 5, PBH with N = 10, using the random perturbation

Test n. Best known MBH PBH with N = 5 PBH with N = 10

5 60.89 62.2629 (1/50) 61.8213 (1/10) 61.3821 (1/5)
6 114.98 115.9993 (1/50) 115.8722 (1/10) 115.7018 (1/5)
7 49.6837 49.2296 (1/50) 49.1873 (11/10) 49.1873 (1/5)
8 39.37 39.5503 (1/50) 39.4056 (1/10) 39.4980 (1/5)
9 11.6809 11.5269 (1/50) 11.5242 (1/10) 11.5118 (1/5)

this test turns out to be easily solved by MBH. For this reason we will not further discuss the
first four instances and will concentrate on the last five ones. In Table 8 we report the results
obtained with 50 runs of MBH, 10 runs of PBH with N = 5, 5 runs of PBH with N = 10
over tests n.5, 7, 9, and 500 runs of MBH, 100 runs of PBH with N = 5, 50 runs of PBH
with N = 10, over tests n.6, 8, for which we observed a larger variability of the final results.
We remark that the dissimilarity measure is defined in a slightly different way with respect
to (5): given a local minimizer X , in vector δX we first place the distances with respect to
the barycenter of the circles with largest radius, ordered in a nondecreasing way, then the
distances with respect to the barycenter of the circles with second largest radius, ordered
again in a nondecreasing way, and so on for all the different radii. Column Best Known
reports the putative optimum for the instance as reported in [11].

We note that MBH and PBH are able to improve the best known results for all these
instances. For test n.7 we obtain better results with MBH, but this case deserves some
discussion. Indeed, according to rule (6) the last ten circles with radius equal to 5 are removed
during the first phase. The different runs of MBH over the reduced space return two distinct
solutions with the seven remaining circles, one with radius 48.6111 and the other with radius
48.922, so that the first one is clearly better than the second one. But when moving to the
second phase (insertion of the missing circles), the situation is reversed: the first solution
leads to a solution with radius 49.2296, while the second one leads to a better solution with
radius 49.1873. Basically, the second solution has a worse radius but larger holes where the
missing circles can be placed. Since in PBH we performed the second phase only from the
best member of the final population (corresponding in all cases to the first solution), we
were never able to reach the best solution with radius 49.1873. Instead, such solution was
often reached (8 out of 10 runs with N = 5, and 5 out of 5 runs with N = 10) once we
allowed to perform the second phase from all members of the final population. What we can
conclude from this experiment is that it is often a good strategy to perform the insertion of
missing circles not only from the best solution returned by the first phase, but also from some
suboptimal solutions obtained during the first phase, because the latter may lead to better
solutions after insertion of the missing circles.

In test n.5 we obtained a large variety of final solutions in the different runs. The best result
was obtained only once with all three methods. However, it seems that PBH is more robust
than MBH. Indeed, the final result was below 114 in 14 out of 500 runs of MBH, 27 out of
100 runs of PBH with N = 5, and 20 out of 50 runs of PBH with N = 10. Something similar,
although less evident, also holds for test n.8, where a result below 39 has been reached in 75
out 500 runs with MBH, 46 out of 100 runs of PBH with N = 5, and 37 out of 50 runs of
PBH with N = 10. Also in test n.8 we observed a large variability of the final solutions. This
test turns out to be particularly challenging. Such instance is one (actually of moderate size)
among those proposed in the Circle Packing Contest (see http://www.recmath.org/contest/

123

http://www.recmath.org/contest/CirclePacking/index.php

J Glob Optim (2010) 47:63–81 79

CirclePacking/index.php), and its difficulty seems to confirm that such instances are more
challenging than the other test instances with unequal circles reported in the literature. More
generally, our impression is that the hardest instances for the case of unequal circles are those
with many circles with slightly different radii. For a discussion about how to deal with the
instances of the contest we refer to [1].

In test n.9 PBH, both with N = 5 and with N = 10, returns better results than MBH. But
this instance will be discussed in more detail below.

In Table 9 we report the results we obtained with the original perturbation move, i.e.,
the coordinates of each circle i with radius ri are shifted by a uniform random perturbation
within the interval [−�ri ,�ri]. It can be clearly seen that in all cases, except test n.9, such
perturbation move, which does not take into account the combinatorial nature of the problem,
delivers results inferior to those obtained with the perturbation based on swapping the centers
of circles with different radii. Note that:

• we restricted to just 50 runs of MBH, 10 of PBH with N = 5, and 5 of PBH with N = 10,
also for tests n.6 and 8, but the indications given by these fewer runs with respect to those
with the other perturbation move are already quite clear;

• the results obtained with PBH are usually better than those obtained with MBH;
• for test n.7 we report the results when circles are added to all the members of the final

population.

Test n.9 deserves a separate comment. For this case it seems that the random perturbation
is better than the one based on swaps. If we look at this instance, we notice that it contains
a large number of circles with the same radius (e.g., 54 circles, one third of the total number
of circles, have radius equal to 0.65). It is possible that such circles occupy a portion of
the container which cannot be optimized by swapping moves (recall that such moves only
involve circles with different radii), while it can be optimized efficiently by random per-
turbations. Seen in another way, we have two distinct aspects in a problem with unequal
circles: a continuous one, represented by the fact that circle centers have to be chosen in R

2,
and a combinatorial one, due to the different radii of the circles. In the case of circles with
all equal radius the combinatorial component simply does not exist, while in case there are
a lot of circles with different radii, the combinatorial component is more relevant than the
continuous one. In case of test n.9, with few different radii and many circles with the same
radius, it seems that taking into account the continuous aspect (through the use of the random
perturbation) is more important than taking into account the combinatorial aspect (through
the use of swapping moves). Something which could be explored in the future is a mixed
strategy, where both swap moves and random ones are employed.

6 Conclusions

In this paper we discussed the Monotonic and PBH approaches for the problem of packing
equal and unequal circles into a circular container with minimum radius. While the good per-
formance of the approaches (with many improvements with respect to the existing literature)
was expected in view of previous works on strictly related packing problems (see [1,2]), the
main aim of this paper was that of analyzing the single components of the approaches in order
to study their impact and to choose carefully their definition. In particular, the experiments
revealed that:

123

http://www.recmath.org/contest/CirclePacking/index.php

80 J Glob Optim (2010) 47:63–81

• local searches alone are not enough: the simple Multistart approach, where local searches
are started from randomly sampled points, performs much worse than a carefully designed
MBH approach;

• in the case of equal circles, the “optimal” size � of the perturbation where circles are ran-
domly shifted within a region whose size is controlled by �, is inversely proportional with
respect to the number of perturbed circles; moreover, it also appears that an intermediate
choice between perturbing only few circles or all of them is the best option;

• in the case of unequal circles, the better choice between a random shift of the circles like in
the case of equal circles, and a combinatorial move where radii of the circles are swapped,
depends on the ratio between the number of different radii’s values and the total number
of circles: as the ratio increases, combinatorial moves become preferable;

• the experiments show that there is not an optimal choice for the stopping parameter Max-
NoImp (sometimes even for small n values, like n = 31, a longer search is better) but
they identify robust choices for it;

• in the case of unequal circles, removal of small circles is often essential to solve the prob-
lems, but it is important to observe that there is not a monotonic relation between partial
and complete configurations, i.e. while a partial configuration has a better radius than
another one, the situation can be reversed when adding missing circles;

• on average, the best performance is obtained with MBH or with PBH with a small popu-
lation, but PBH with a larger population seems to guarantee more robustness, with good
results also over the instances where MBH has to struggle.

References

1. Addis, B., Locatelli, M., Schoen, F.: Efficiently packing unequal disks in a circle. Oper. Res.
Lett. 36(1), 37–42 (2008)

2. Addis, B., Locatelli, M., Schoen, F.: Disk packing in a square: a new global optimization
approach. INFORMS J. Comput. 20, 516–524 (2008)

3. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing prob-
lems. Comput. Oper. Res. 35, 2357–2375 (2008)

4. Boll, D.V., Donovan, J., Graham, R.L., Lubachevsky, B.D.: Improving dense packings of equal disks in
a square. Electron. J. Comb. 7, R46 (2000)

5. Casado, L.G., García, I., Szabó, P.G., Csendes, T.: Equal circles packing in square II—new results for up
to 100 circles using the TAMSASS-PECS Algorithm. In: “Optimizarion Theory; Recent Developments
from Mátraháza. Applied Optimization Book Series, Vol. 59, pp 207–224, Kluwer Academic Publishers
(2001).

6. Castillo, I., Kampas, F.J., Pinter, J.D.: Solving circle packing problems by global optimization: numerical
results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)

7. de Groot, C., Peikert, R., Würtz, D., Monagan, M.: Packing circles in a square: a review and new results,
System Modelling and Optimization, Proceedings of 15th IFIP Conference, Zürich, 45–54 (1991)

8. Graham, R.L., Lubachevsky, B.D.: Repeated patterns of dense packings of equal disks in a square. Elec-
tron. J. Comb. 3, 1–16 (1996)

9. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimiza-
tion. SIAM J. Optim. 12, 979–1006 (2002)

10. Grosso, A., Locatelli, M., Schoen, F.: A population based approach for hard global optimization problems
based on dissimilarity measures. Math. Program. 110(2), 373–404 (2007)

11. Hifi, M., M’Hallah, R.: Adaptive and restarting techniques based algorithms for circular packing prob-
lems. Comput. Optim. Appl. 39, 17–35 (2008)

12. Huang, H., Huang, W., Zhang, Q., Xu, D.: An improved algorithm for the packing of unequal circles
within a larger containing circle. Eur. J. Oper. Res. 141, 440–453 (2002)

13. Huang, W., Li, Y., Jurkowiak, B., Li, C.M., Xu, R.C.: A two-level search strategy for packing unequal
circles into a circle container. In: Proceedings of the International Conference on Principles and Practice
of Constraint Programming, pp. 868–872. Springer, Berlin (2003)

123

J Glob Optim (2010) 47:63–81 81

14. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles, J. Glob. Optim. (2008,
in press). doi:10.1007/s10898-007-9274-6

15. Leary, R.H.: Global optimization on funneling landscapes. J. Glob. Optim. 18, 367–383 (2000)
16. Lee, J., Scheraga, H.A., Rackovsky, S.: New optimization method for conformational energy calculations

on polypeptides: conformational space annealing. J. Comput. Chem. 18(9), 1222–1232 (1997)
17. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization

approach. Discrete Appl. Math. 122, 139–166 (2002)
18. Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Hand-

book of Metaheuristics, pp. 321–353. Kluwer, Norwell (2002)
19. Markot, M.C., Csendes, T.: A new verified optimization technique for the “packing circles in a unit

square” problems. SIAM J. Optim. 16, 193–219 (2005)
20. Mladenovic, N., Plastria, F., Uroevi, D.: Reformulation descent applied to circle packing problems. Com-

put. Oper. Res. 32, 2419–2434 (2005)
21. Nurmela, K.J., Oestergard, P.R.J.: More optimal packings of equal circles in a square. Discrete Comput.

Geom. 22, 439–457 (1999)
22. Nurmela, K.J., Oestergard, P.R.J.: Packing up to 50 equal circles in a square. Discrete Comput.

Geom. 18, 111–120 (1997)
23. Packomania web site maintained by Specht, www.packomania.com
24. Pintér, J.D., Kampas, F.J.: Nonlinear optimization in mathematica with mathoptimizer professional. Math.

Educ. Res. 10, 1–18 (2005)
25. Stoyan, Y., Yaskow, G.: Mathematical model and solution method of optimization problem of place-

ment of rectangles and circles taking into account special constraints. Int. Trans. Oper. Res. 5, 45–57
(1998)

26. Stoyan, Y.G., Yaskov, G.N.: A mathematical model and a solution method for the problem of placing
various-sized circles into a strip. Eur. J. Oper. Res. 156, 590–600 (2004)

27. Szabó, P.G., Markót, M.C., Csendes, T.: Global optimization in geometry-circle packing into the
square. In: Audet, C., Hansen, P., Savard, G. (eds.) Essays and Surveys in Global Optimization, pp. 233–
266. Kluwer, Dordrecht (2005)

28. Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., Garcia, I.: New Approaches to Circle
Packing in a Square, Optimization and Its Applications. Springer, Berlin (2007)

29. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of
Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

30. Wang, H., Huang, W., Zhang, Q., Xu, D.: An improved algorithm for the packing of unequal circles within
a larger containing circle. Eur. J. Oper. Res. 141, 440–453 (2002)

31. Zhang, D., Deng, A.: An effective hybrid algorithm for the problem of packing circles into a larger
containing circle. Comput. Oper. Res. 32, 1941–1951 (2005)

123

http://dx.doi.org/10.1007/s10898-007-9274-6
www.packomania.com

	Solving the problem of packing equal and unequal circles in a circular container
	Abstract
	1 Introduction
	2 Monotonic basin hopping
	2.1 Local search procedure
	2.2 Perturbation move
	2.3 Stopping rule

	3 Population basin hopping
	4 Computational experiments and analysis
	4.1 Number of local minimizers
	4.2 MBH and multistart
	4.3 Choice of the MaxNoImp parameter
	4.4 Extensions of the basic perturbation strategy
	4.5 Computational experiments with PBH

	5 The case of unequal circles
	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

